The previous post about Q-Learning is here:
[Reinforcement Learning] Get started to learn Q-Learning for reinforcement learning
Basically, Deep Q-Learning ( DQN ) is upgraded the Q-Learning algorithm and the Q-table is replaced by the neural network. For the DQN tutorial, I refer to these as follows: ( sorry, they are written in Chinese )
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/4-1-A-DQN/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/4-1-DQN1/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/4-2-DQN2/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/4-3-DQN3/
Wednesday, November 28, 2018
Thursday, November 22, 2018
[Reinforcement Learning] Get started to learn Q-Learning for reinforcement learning
The previous post about reinforcement learning:
[Reinforcement Learning] Get started to learn gradient method for reinforcement learning
For the Q-Learning tutorial, I refer to these as follows: ( sorry, they are written in Chinese )
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-2-A-q-learning/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-2-tabular-q1/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-3-tabular-q2/
[Reinforcement Learning] Get started to learn gradient method for reinforcement learning
For the Q-Learning tutorial, I refer to these as follows: ( sorry, they are written in Chinese )
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-2-A-q-learning/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-2-tabular-q1/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-3-tabular-q2/
Wednesday, November 21, 2018
[Reinforcement Learning] Get started to learn policy gradient method for reinforcement learning
This post is about my first time to learn policy gradient method for reinforcement learning. Basically, there are already a lot of materials on the internet, but in this time, I only want to focus on a tutorial as follows: ( sorry, they are written in Chinese )
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/5-1-policy-gradient-softmax1/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/5-2-policy-gradient-softmax2/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/5-1-policy-gradient-softmax1/
https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/5-2-policy-gradient-softmax2/
Thursday, November 15, 2018
[RNN] What are the difference of input and output's tensor shape in dynamic_rnn and static_rnn using TensorFlow
When studying RNN, my first issue encountered in my program is about the shape of input and output tensors. Shape is a very important information to connect between layers. Here I just directly point out what are differences in input/output shape of static RNN and dynamic RNN.
P.S: If you use Keras to write your RNN model, you won't need to deal with these details.
P.S: If you use Keras to write your RNN model, you won't need to deal with these details.
Tuesday, November 13, 2018
[TensorFlow] The explanation of average gradients by example in data parallelism
When studying some examples of training model using Multi-GPUs ( in data parallelism ), the average gradients function always exists in some kind of ways, and here is a simple version as follows:
Thursday, November 8, 2018
[Dynamic Control Flow] Whitepaper: Implementation of Control Flow in TensorFlow
In the following whitepaper, we can understand more dynamic control flow in details.
Whitepaper: Implementation of Control Flow in TensorFlow
http://download.tensorflow.org/paper/white_paper_tf_control_flow_implementation_2017_11_1.pdf
Whitepaper: Implementation of Control Flow in TensorFlow
http://download.tensorflow.org/paper/white_paper_tf_control_flow_implementation_2017_11_1.pdf
Subscribe to:
Posts (Atom)