Wednesday, August 29, 2018

[TensorFlow] My simple way to profile TensorFlow and dump variables and GPU memory

As we know that if we want to profile Tensorflow graph and know what operations take more time and what less. This can be done with Tensorflow timeline module like this:
( I ignore the part of the model to simplify my example code )
...
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
...
with tf.Session(config=config) as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(10):
            sess.run(training_op, feed_dict={X: picture, y:picture_label}, 
                     options=run_options, run_metadata=run_metadata)
            fetched_timeline = timeline.Timeline(run_metadata.step_stats)
            chrome_trace = fetched_timeline.generate_chrome_trace_format()
            with open('timeline_step_%d.json' % iteration, 'w') as f:
                f.write(chrome_trace)

Tuesday, August 21, 2018

[ONNX] Train in Tensorflow and export to ONNX (Part II)

If you read the previous post as the link below, you probably may ask a question: If the input TF graph for freezing is not a binary format, what do we do?
http://danny270degree.blogspot.com/2018/08/onnx-train-in-tensorflow-and-export-to.html

Let us recall the previous example below. The file "graph.proto" is the binary format of the protobuf file for TensorFlow graph generated from the following function:
  with open("graph.proto", "wb") as file:
    graph = tf.get_default_graph().as_graph_def(add_shapes=True)
    file.write(graph.SerializeToString())

Friday, August 17, 2018

[TensorFlow] Rewriter_Config and Memory Optimization Passes

In the previous post as the below link, I mentioned that the default value of rewrite_config seems to change a little bit.
https://danny270degree.blogspot.com/2018/06/tensorflow-compare-memory-options-in.html

To clarify my doubt, I check the TensorFlow's memory_optimizer.cc and arrange the mapping table:
















Thursday, August 16, 2018

[TensorFlow] How to print the timestamp of a node/operation of computation graph in run-time?

When some people first time tries to debug or print out information of some result from a node/operation in the computation graph in TensorFlow, they maybe confuse about how to do it. Fortunately, someone in Google gave a great explanation of the print function:
https://towardsdatascience.com/using-tf-print-in-tensorflow-aa26e1cff11e
After reading it, you should understand how tf.Print() function works and to use it.

Wednesday, August 8, 2018

[ONNX] Use ONNX_TF and nGraph_ONNX to do inference/prediction with ONNX model


Here I try to use the pre-trained model from ONNX model zoo, which the models are already converted from some deep learning framework. So I download the Resnet50 model from the following URL and untar it:

wget https://s3.amazonaws.com/download.onnx/models/opset_8/resnet50.tar.gz
tar -xzvf resnet50.tar.gz 
P.S: pre-trained ONNX models: https://github.com/onnx/models

Then, I can do the inference/prediction using this ONNX model in two ways:

[ONNX] Train in Tensorflow and export to ONNX (Part I)

From my point of view, ONNX is a model description spec and ONNX model needs Deep Learning framework or backend tool/compiler which supports it to run.
The advantage of ONNX as I know is about portable and exchangeable between DL frameworks.
Here I will use this tutorial to convert TensorFlow's model to ONNX model by myself.

https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb