Thursday, June 7, 2018

[TX2 研究] My first try on Jetson TX2

I got a Jetson TX2 several days ago from my friend and it looks like following pictures. I setup it using Nivida's installing tool: JetPack-L4T-3.2 version (JetPack-L4T-3.2-linux-x64_b196.run). During the installation, I indeed encounter some issues with not abling to setup IP address on TX2, and I resolved it. If anyone still has this issue, let me know and I will post another article to explain the resolving steps. 

Wednesday, August 30, 2017

[Caffe] Try out Caffe with Python code

This document is just a testing record to try out on Caffe with Python code. I refer to this blog. For using Python, we can easily to access every data flow blob in layers, including diff blob, weight blob and bias blob. It is so convenient for us to understand the change of training phase's weights and what have done in each step.

Monday, August 7, 2017

[Caffe] How to use Caffe to solve the regression problem?

There is a question coming up to my mind recently. How to use Caffe to solve the regression problem? We used to see a bunch of examples related to image recognition with labels and they are classification problem. In my experience, I have done this problem using TensorFlow, not Caffe. But, I think in theory they are both the same. The key point is using EuclideanLossLayer as the final Loss Layer and it's the detail from the official web site:

Wednesday, August 2, 2017

[Raspberry Pi] Use Wireless and Ethernet together

The following content is my Raspberry Pi 3's setting in /etc/network/interface as follows. In my case, I both use wireless and ethernet device at the same time.
# Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto wlan0
allow-hotplug wlan0
iface wlan0 inet manual
    Wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

allow-hotplug eth0
iface eth0 inet static
    address 140.96.29.224
    netmask 255.255.255.0
    up ip route add 100.85.0.0/24 via 140.96.29.254 dev eth0
    up ip route add 140.96.29.0/24 via 140.96.29.254 dev eth0
    up ip route add 140.96.98.0/24 via 140.96.29.254 dev eth0

[Debug] Debugging Python and C++ exposed by boost together

During the studying of Caffe, I was curious about how Caffe provides Python interface and what kind of tool uses for wrapping. Then, the answer is Boost.Python. I think for C++ developer, it is worth time to learn and I will study it sooner. In this post, I want to introduce the debugging skill which I found in this post and I believe these are very useful such as debugging Caffe with Python Layer. Here is the link:
https://stackoverflow.com/questions/38898459/debugging-python-and-c-exposed-by-boost-together

Tuesday, July 18, 2017

[PCIe] lspci command and the PCIe devices in my server

The following content is about my PCIe devices/drivers and the lspci command results.

$ cd /sys/bus/pci_express/drivers
$ ls -al
drwxr-xr-x 2 root root 0  7月  6 15:33 aer/
drwxr-xr-x 2 root root 0  7月  6 15:33 pciehp/
drwxr-xr-x 2 root root 0  7月  6 15:33 pcie_pme/

Thursday, May 18, 2017

[Caffe] Install Caffe and the depended packages

This article is just for me to quickly record the all the steps to install the depended packages for Caffe. So, be careful that it maybe is not good for you to walk through them in your environment. ^_^

# Install CCMAKE

$ sudo apt-get install cmake-curses-gui

Monday, May 15, 2017

[NCCL] Build and run the test of NCCL


NCCL requires at least CUDA 7.0 and Kepler or newer GPUs. Best performance is achieved when all GPUs are located on a common PCIe root complex, but multi-socket configurations are also supported.

Note: NCCL may also work with CUDA 6.5, but this is an untested configuration.

Build & run

To build the library and tests.

$ cd nccl
$ make CUDA_HOME=<cuda install path> test
Test binaries are located in the subdirectories nccl/build/test/{single,mpi}.

$ ~/git/nccl$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./build/lib
$ ~/git/nccl$ ./build/test/single/all_reduce_test 100000000
# Using devices
#   Rank  0 uses device  0 [0x04] GeForce GTX 1080 Ti
#   Rank  1 uses device  1 [0x05] GeForce GTX 1080 Ti
#   Rank  2 uses device  2 [0x08] GeForce GTX 1080 Ti
#   Rank  3 uses device  3 [0x09] GeForce GTX 1080 Ti
#   Rank  4 uses device  4 [0x83] GeForce GTX 1080 Ti
#   Rank  5 uses device  5 [0x84] GeForce GTX 1080 Ti
#   Rank  6 uses device  6 [0x87] GeForce GTX 1080 Ti
#   Rank  7 uses device  7 [0x88] GeForce GTX 1080 Ti

#                                                 out-of-place                    in-place
#      bytes             N    type      op     time  algbw  busbw      res     time  algbw  busbw      res
   100000000     100000000    char     sum   30.244   3.31   5.79    0e+00   29.892   3.35   5.85    0e+00
   100000000     100000000    char    prod   30.493   3.28   5.74    0e+00   30.524   3.28   5.73    0e+00
   100000000     100000000    char     max   29.745   3.36   5.88    0e+00   29.877   3.35   5.86    0e+00
   100000000     100000000    char     min   29.744   3.36   5.88    0e+00   29.868   3.35   5.86    0e+00
   100000000      25000000     int     sum   29.692   3.37   5.89    0e+00   29.754   3.36   5.88    0e+00
   100000000      25000000     int    prod   30.733   3.25   5.69    0e+00   30.697   3.26   5.70    0e+00
   100000000      25000000     int     max   29.871   3.35   5.86    0e+00   29.700   3.37   5.89    0e+00
   100000000      25000000     int     min   29.809   3.35   5.87    0e+00   29.852   3.35   5.86    0e+00
   100000000      50000000    half     sum   28.590   3.50   6.12    1e-02   27.545   3.63   6.35    1e-02
   100000000      50000000    half    prod   27.416   3.65   6.38    1e-03   27.375   3.65   6.39    1e-03
   100000000      50000000    half     max   30.811   3.25   5.68    0e+00   30.670   3.26   5.71    0e+00
   100000000      50000000    half     min   30.818   3.24   5.68    0e+00   30.931   3.23   5.66    0e+00
   100000000      25000000   float     sum   29.719   3.36   5.89    1e-06   29.750   3.36   5.88    1e-06
   100000000      25000000   float    prod   29.741   3.36   5.88    1e-07   30.029   3.33   5.83    1e-07
   100000000      25000000   float     max   28.400   3.52   6.16    0e+00   28.400   3.52   6.16    0e+00
   100000000      25000000   float     min   28.364   3.53   6.17    0e+00   28.434   3.52   6.15    0e+00
   100000000      12500000  double     sum   33.989   2.94   5.15    0e+00   34.104   2.93   5.13    0e+00
   100000000      12500000  double    prod   33.895   2.95   5.16    2e-16   33.833   2.96   5.17    2e-16
   100000000      12500000  double     max   30.228   3.31   5.79    0e+00   30.273   3.30   5.78    0e+00
   100000000      12500000  double     min   30.324   3.30   5.77    0e+00   30.341   3.30   5.77    0e+00
   100000000      12500000   int64     sum   29.914   3.34   5.85    0e+00   30.036   3.33   5.83    0e+00
   100000000      12500000   int64    prod   30.975   3.23   5.65    0e+00   31.083   3.22   5.63    0e+00
   100000000      12500000   int64     max   29.954   3.34   5.84    0e+00   29.949   3.34   5.84    0e+00
   100000000      12500000   int64     min   29.946   3.34   5.84    0e+00   29.952   3.34   5.84    0e+00
   100000000      12500000  uint64     sum   29.981   3.34   5.84    0e+00   30.100   3.32   5.81    0e+00
   100000000      12500000  uint64    prod   30.911   3.24   5.66    0e+00   30.800   3.25   5.68    0e+00
   100000000      12500000  uint64     max   29.890   3.35   5.85    0e+00   29.947   3.34   5.84    0e+00
   100000000      12500000  uint64     min   29.929   3.34   5.85    0e+00   29.964   3.34   5.84    0e+00

 Out of bounds values : 0 OK
 Avg bus bandwidth    : 5.81761

[Mpld3] Render Matplotlib chart to web using Mpld3

The following example is about rendering a matplotlib chart on web, which is based on Django framework to build up. I encountered some problems before, such as, not able to see chart on the web page or having a run-time error after reloading the page. But, all the problems are solved.

<< demo/views.py>>

import matplotlib.pyplot as plt
import numpy as np
import mpld3

def plot_test1(request):
context = {}
fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))
N = 100

"""
Demo about using matplotlib and mpld3 to rendor charts
"""
scatter = ax.scatter(np.random.normal(size=N),
np.random.normal(size=N),
c=np.random.random(size=N),
s=1000 * np.random.random(size=N),
alpha=0.3,
cmap=plt.cm.jet)
ax.grid(color='white', linestyle='solid')

ax.set_title("Scatter Plot (with tooltips!)", size=20)

labels = ['point {0}'.format(i + 1) for i in range(N)]
tooltip = mpld3.plugins.PointLabelTooltip(scatter, labels=labels)
mpld3.plugins.connect(fig, tooltip)
#figure = mpld3.fig_to_html(fig)
figure = json.dumps(mpld3.fig_to_dict(fig))
context.update({ 'figure' : figure })

"""
Demo about using tensorflow to predict the result
"""
num = np.random.randint(100)
prediction = predict_service.predict(num)
context.update({ 'num' : num })
context.update({ 'prediction' : prediction })

return render(request, 'demo/demo.html', context)


<<demo/demo.html>>

<script type="text/javascript" src="http://d3js.org/d3.v3.min.js"></script>
<script type="text/javascript" src="http://mpld3.github.io/js/mpld3.v0.2.js"></script>
<style>
/* Move down content because we have a fixed navbar that is 50px tall */
body {
padding-top: 50px;
padding-bottom: 20px;
}
</style>
<html>
<div id="fig01"></div>
<script type="text/javascript">

figure = {{ figure|safe }};
mpld3.draw_figure("fig01", figure);

</script>
</html>

So, we can see the result as follows:





[Hadoop] To build a Hadoop environment (a single node cluster)

For the purpose of studying Hadoop, I have to build a testing environment to do. I found some resource links are good enough to build a single node cluster of Hadoop MapReduce as follows. And there are additional changes from my environment that I want to add some comments for my reference.

http://www.thebigdata.cn/Hadoop/15184.html
http://www.powerxing.com/install-hadoop/

Login the user "hadoop"

$ sudo su - hadoop

Go to the location of Hadoop

$ /usr/local/hadoop

Add the variables in ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64 export HADOOP_HOME=/usr/local/hadoop export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop export HADOOP_INSTALL=/usr/local/hadoop export PATH=$PATH:$HADOOP_INSTALL/bin export PATH=$PATH:$HADOOP_INSTALL/sbin export HADOOP_MAPRED_HOME=$HADOOP_INSTALL export HADOOP_COMMON_HOME=$HADOOP_INSTALL export HADOOP_HDFS_HOME=$HADOOP_INSTALL export YARN_HOME=$HADOOP_INSTALL

Modify $JAVA_HOME in etc/hadoop/hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

Start dfs and yarn

$ sbin/start-dfs.sh
$ sbin/start-yarn.sh

Finally, we can try the Hadoop MapReduce example as follows:
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar grep input output 'dfs[a-z.]+'

[Spark] To install Spark environment based on Hadoop

This document is to record how to install Spark environment based on Hadoop as the previous one. For running Spark in Ubuntu machine, it should install Java first. Using the following command is easily to install Java in Ubuntu machine.

$ sudo apt-get install openjdk-7-jre openjdk-7-jdk
$ dpkg -L openjdk-7-jdk | grep '/bin/javac'
$ /usr/lib/jvm/java-7-openjdk-amd64/bin/javac

So, we can setup the JAVA_HOME environment variable as follows:
$ vim /etc/profile
  append this ==> export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

$ sudo tar -zxf ~/Downloads/spark-1.6.0-bin-without-hadoop.tgz -C /usr/local/
$ cd /usr/local
$ sudo mv ./spark-1.6.0-bin-without-hadoop/ ./spark
$ sudo chown -R hadoop:hadoop ./spark

$ sudo apt-get update
$ sudo apt-get install scala
$ wget http://apache.stu.edu.tw/spark/spark-1.6.0/spark-1.6.0-bin-hadoop2.6.tgz
$ tar xvf spark-1.6.0-bin-hadoop2.6.tgz
$ cd /spark-1.6.0-bin-hadoop2.6/bin
$ ./spark-shell

$ cd /usr/local/spark
$ cp ./conf/spark-env.sh.template ./conf/spark-env.sh
$ vim ./conf/spark-env.sh
  append this ==> export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)

[picamera] Solving the problem of video display using Raspberry Pi Camera

When I tried to use Raspberry Pi Camera to display video or image, I encountered a problem that there is no image frame and the GUI showed a black frame on the screen. It took me a while to figure out this issue.
    After searching the similar error on the Internet, I found it is related with using picamera library v1.11 and Python 2.7. So I try downgrading to picamera v1.10 and this should resolve the blank/black frame issue:

The linux command is as follows:
$ sudo pip uninstall picamera
$ sudo pip install 'picamera[array]'==1.10

So, it seems there are some issues with the most recent version of picamera that are causing a bunch of problems for Python 2.7 and Python 3 users.

[Kafka] Install and setup Kafka

Kafka is used for building real-time data pipelines and streaming apps. It is horizontally scalable, fault-tolerant, wicked fast, and runs in production in thousands of companies.



Install and setup Kafka
$ sudo useradd kafka -m
$ sudo passwd kafka
$ sudo adduser kafka sudo
$ su - kafka
$ sudo apt-get install zookeeperd


To make sure that it is working, connect to it via Telnet:
$telnet localhost 2181
$ mkdir -p ~/Downloads
$ wget "http://mirror.cc.columbia.edu/pub/software/apache/kafka/0.8.2.1/kafka_2.11-0.8.2.1.tgz" -O ~/Downloads/kafka.tgz
$ mkdir -p ~/kafka && cd ~/kafka
$ tar -xvzf ~/Downloads/kafka.tgz --strip 1
$ vi ~/kafka/config/server.properties

By default, Kafka doesn't allow you to delete topics. To be able to delete topics, add the following line at the end of the file:
⇒ delete.topic.enable = true

Start Kafka
$ nohup ~/kafka/bin/kafka-server-start.sh ~/kafka/config/server.properties > ~/kafka/kafka.log 2>&1 &

Publish the string "Hello, World" to a topic called TutorialTopic by typing in the following:
$ echo "Hello, World" | ~/kafka/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic TutorialTopic
$ ~/kafka/bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic TutorialTopic --from-beginning

[InfluxDB] Install and setup InfluxDB

Download the source and install

$ wget https://s3.amazonaws.com/influxdb/influxdb_0.12.1-1_amd64.deb
$ sudo dpkg -i influxdb_0.12.1-1_amd64.deb

Edit influxdb.conf file

$ vim /etc/influxdb/influxdb.conf

螢幕快照 2016-04-13 下午2.42.58.png

Restart influxDB

$ sudo service influxdb restart
   influxdb process was stopped [ OK ]
   Starting the process influxdb [ OK ]
   influxdb process was started [ OK ]

$ sudo netstat -naptu | grep LISTEN | grep influxd
tcp6       0      0 :::8083                 :::*                    LISTEN      3558/influxd  
tcp6       0      0 :::8086                 :::*                    LISTEN      3558/influxd  
tcp6       0      0 :::8088                 :::*                    LISTEN      3558/influxd


Client command tool 

$influx
> show databases

Tuesday, May 9, 2017

[OpenGL] Draw 3D and Texture with BMP image using OpenGL Part I

It has been more than half of year not posting any article in my blogger and that makes me a little bit embarrassed. Well, for breaking this situation, I just quickly explain a simple concept about OpenGL coordinate.

Before taking an adventure to OpenGL, we have to know the coordinate in OpenGL first. Please check out the following graph. As we can see, the perspective of z position is pointed to us and it's so different from OpenCV.



If we take a look closer, the following OpenGL code can be explained in the picture below:


glBegin(GL_QUADS) # Start Drawing The Cube

# Front Face (note that the texture's corners have to match the quad's corners)
glTexCoord2f(1.0, 0.0); glVertex3f(-1.0, -1.0, 1.0) # Bottom Left Of The Texture and Quad
glTexCoord2f(1.0, 1.0); glVertex3f( 1.0, -1.0, 1.0) # Bottom Right Of The Texture and Quad
glTexCoord2f(0.0, 1.0); glVertex3f( 1.0, 1.0, 1.0) # Top Right Of The Texture and Quad
glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, 1.0, 1.0) # Top Left Of The Texture and Quad

# Back Face
glTexCoord2f(1.0, 0.0); glVertex3f(-1.0, -1.0, -1.0) # Bottom Right Of The Texture and Quad
glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, 1.0, -1.0) # Top Right Of The Texture and Quad
glTexCoord2f(0.0, 1.0); glVertex3f( 1.0, 1.0, -1.0) # Top Left Of The Texture and Quad
glTexCoord2f(0.0, 0.0); glVertex3f( 1.0, -1.0, -1.0) # Bottom Left Of The Texture and Quad

# Top Face
glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.0, -1.0) # Top Left Of The Texture and Quad
glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, 1.0, 1.0) # Bottom Left Of The Texture and Quad
glTexCoord2f(1.0, 0.0); glVertex3f( 1.0, 1.0, 1.0) # Bottom Right Of The Texture and Quad
glTexCoord2f(1.0, 1.0); glVertex3f( 1.0, 1.0, -1.0) # Top Right Of The Texture and Quad

# Bottom Face
glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, -1.0, -1.0) # Top Right Of The Texture and Quad
glTexCoord2f(0.0, 1.0); glVertex3f( 1.0, -1.0, -1.0) # Top Left Of The Texture and Quad
glTexCoord2f(0.0, 0.0); glVertex3f( 1.0, -1.0, 1.0) # Bottom Left Of The Texture and Quad
glTexCoord2f(1.0, 0.0); glVertex3f(-1.0, -1.0, 1.0) # Bottom Right Of The Texture and Quad

# Right face
glTexCoord2f(1.0, 0.0); glVertex3f( 1.0, -1.0, -1.0) # Bottom Right Of The Texture and Quad
glTexCoord2f(1.0, 1.0); glVertex3f( 1.0, 1.0, -1.0) # Top Right Of The Texture and Quad
glTexCoord2f(0.0, 1.0); glVertex3f( 1.0, 1.0, 1.0) # Top Left Of The Texture and Quad
glTexCoord2f(0.0, 0.0); glVertex3f( 1.0, -1.0, 1.0) # Bottom Left Of The Texture and Quad

# Left Face
glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, -1.0, -1.0) # Bottom Left Of The Texture and Quad
glTexCoord2f(1.0, 0.0); glVertex3f(-1.0, -1.0, 1.0) # Bottom Right Of The Texture and Quad
glTexCoord2f(1.0, 1.0); glVertex3f(-1.0, 1.0, 1.0) # Top Right Of The Texture and Quad
glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.0, -1.0) # Top Left Of The Texture and Quad

glEnd(); # Done Drawing The Cube



So, right now, if we just look at the first section of the code as follows, it represents the blue quadrilateral for the front face.




And, the texture coordinate represents the direction of the image.


In sum, we can see the result just like this:



Tuesday, September 13, 2016

[Haar Classifier] Train your own OpenCV Haar classifier

I just keep a record for myself because there are a lot of documents teaching how to train your haar classifier and almost of them seem to don't work well. The following 2 items are clear and easy to understand.

The Data Image Source (cars) I use.
http://cogcomp.cs.illinois.edu/Data/Car/

1. Train your own OpenCV Haar classifier
https://github.com/mrnugget/opencv-haar-classifier-training

find ./positive_images -iname "*.pgm" > positives.txt
find ./negative_images -iname "*.pgm" > negatives.txt

perl bin/createsamples.pl positives.txt negatives.txt samples 550\
  "opencv_createsamples -bgcolor 0 -bgthresh 0 -maxxangle 1.1\
  -maxyangle 1.1 maxzangle 0.5 -maxidev 40 -w 48 -h 24"

python ./tools/mergevec.py -v samples/ -o samples.vec

opencv_traincascade -data classifier -vec samples.vec -bg negatives.txt\
  -numStages 10 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos 1000\
  -numNeg 600 -w 48 -h 24 -mode ALL -precalcValBufSize 1024\
  -precalcIdxBufSize 1024

2. OpenCV Tutorial: Training your own detector | packtpub.com
https://www.youtube.com/watch?v=WEzm7L5zoZE
find pos/ -name '*.pgm' -exec echo \{\} 1 0 0 100 40 \; > cars.info
find neg/ -name '*.pgm' > bg.txt

opencv_createsamples -info cars.info -num 550 -w 48 -h 24 -vec cars.vec
opencv_createsamples -w 48 -h 24 -vec cars.vec

opencv_traincascade -data data -vec cars.vec -bg bg.txt \
 -numPos 500 -numNeg 500 -numStages 10 -w 48 -h 24 -featureType LBP

P.S: Which one is best? I don't know...

[Image] How to resize, convert & modify images from the Linux

Installation
$ sudo apt-get install imagemagick

Converting Between Formats
$ convert howtogeek.png howtogeek.jpg

You can also specify a compression level for JPEG images:
$ convert howtogeek.png -quality 95 howtogeek.jpg

Resizing Images
$ convert example.png -resize 200×100 example.png
  - to force the image to become a specific size – even if it messes up the aspect ratio
$ convert example.png -resize 200×100! example.png

$ convert example.png -resize 200 example.png
$ convert example.png -resize x100 example.png

Rotating an Image
convert howtogeek.jpg -rotate 90 howtogeek-rotated.jpg

Applying Effects
ImageMagick can apply a variety of effects to an image.
  - For example,   the following command applies the “charcoal” effect to an image:
$ convert howtogeek.jpg -charcoal 2 howtogeek-charcoal.jpg
  - the “Implode” effect with a strength of 1:
# convert howtogeek.jpg -implode 1 howtogeek-imploded.jpg

Batch Processing
for file in *.png; do convert $file -rotate 90 rotated-$file; done



Reference:
http://www.howtogeek.com/109369/how-to-quickly-resize-convert-modify-images-from-the-linux-terminal/

Thursday, September 8, 2016

[TensorFlow] My case to install TensorFlow with GPU enabled

My Operation System is Ubuntu 14.04 LTS 5 and GPU card is GeForce GTX 750Ti

1. Go to nvidia.com and download the driver (NVIDIA-Linux-x86_64-367.44.sh)
2. For Nvidia to find linux header files (*):
$ sudo apt-get install build-essential linux-headers-$(uname -r)

3. To enable full screen text mode (nomodeset):
$ sudo gedit /etc/default/grub
>> Edit GRUB_CMDLINE_LINUX_DEFAULT="quiet splash nomodeset"
Save it and reboot
$ sudo update-grub
$ sudo reboot

4. Log into with Ctl +Alt + F1

5. Stop the X Server service
$ sudo service lightdm stop

6. Install nVidia driver
$ sudo ./NVIDIA-Linux-x86_64-367.44.sh

7. Install CUDA (GPUs on Linux)
Download and install Cuda Toolkit
sudo dpkg -i cuda-repo-ubuntu1404-8-0-local_8.0.44-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

8. Download and install cuDNN
tar xvzf cudnn-8.0-linux-x64-v5.1.tgz
cd cuda
sudo cp include/cudnn.h /usr/local/cuda-8.0/include
sudo cp lib64/* /usr/local/cuda-8.0/lib64
sudo chmod a+r /usr/local/cuda-8.0/lib64/libcudnn*

9. You also need to set the LD_LIBRARY_PATH and CUDA_HOME environment variables. Consider adding the commands below to your ~/.bash_profile. These assume your CUDA installation is in /usr/local/cuda:
$ vim ~/.bashrc
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64"
export CUDA_HOME=/usr/local/cuda-8.0
export PATH="$CUDA_HOME/bin:$PATH"
export PATH="$PATH:$HOME/bin"

10. To install TensorFlow for Ubuntu/Linux 64-bit, GPU enabled:
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.1-cp27-none-linux_x86_64.whl
To find out which device is used, you can enable log device placement like this:
$ python
>>>> import tensorflow as tf
>>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Tuesday, August 16, 2016

[OpenCV] To install OpenCV on Debian and create a test project using Netbeans

This document is the steps to install OpenCV on Debian and create a test project using Netbeans for my reference in case.

#Prepare the build environment GCC、Cmake、pkgconfig
$sudo apt-get -y install build-essential cmake pkg-config

#Install ImageI/O libraries
$sudo apt-get -y install libjpeg62-dev libtiff4-dev libjasper-dev

#Install Viode I/O libraries
$sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
$sudo apt-get -y install libdc1394-22-dev libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev

#Install GTK+2.x and QT libraries
$sudo apt-get -y install  libgtk2.0-dev libqt4-dev

Thursday, August 11, 2016

[Hadoop] Setting up a Single Node Cluster

Basically these resource links are good enough to do a single node cluster of Hadoop MapReduce. But I still want to add some comments for my reference.
http://www.thebigdata.cn/Hadoop/15184.html
http://www.powerxing.com/install-hadoop/

Login the user "hadoop"
# sudo su - hadoop

Go to the location of Hadoop
# /usr/local/hadoop

Add the variables in ~/.bashrc
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64
export HADOOP_HOME=/usr/local/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL

Modify $JAVA_HOME in etc/hadoop/hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

Start dfs and yarn
# sbin/start-dfs.sh
# sbin/start-yarn.sh

Finally, we can try the Hadoop MapReduce example as follows:
# bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar grep input output 'dfs[a-z.]+'

P.S:
In order to forcefully let the namenode leave safemode, following command should be executed:
# hdfs dfsadmin -safemode leave





Tuesday, August 2, 2016

[Tensorflow] Fizz-Buzz example enhancement

I am just based on this Fizz-Buzz example as below to add 2nd convolution layer and guess what? The result is quicker to be learn. But, this is just the first step to learn "Deep Learning"...
There is still a lot of things and knowledge that need to learn more.
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

Before



After


Reference
http://www.slideshare.net/WrangleConf/wrangle-2016-lightning-talk-fizzbuzz-in-tensorflow

Monday, July 25, 2016

[Neutron] The first glance of L3HA mode in OpenStack Neutron ( Liberty version )

I just quickly take the first glance of L3HA mode in OpenStack Neutron ( Liberty version ) and is based on my tenant environment as follows:

My tenant environment

# neutron router-list




# neutron net-list

# neutron subnet-list

The Topology view looks like this:


Here I have 2 instances in my tenant:


So, if I use the instance: daanny_vm1 to ping danny_vm2, due to the different subnets, this action will trigger L3 vrouter function.

# ping 192.168.66.4 ( danny_vm2 )

# ip netns exec qrouter-f1e03fef-cccf-43de-9d35-56d11d636765 tcpdump -eln -i qr-4433f31f-5d icmp


The interface qr-4433f31f-5d is my subnet 192.168.44.0/24's gateway port as follows:
# neutron --os-tenant-name danny port-list | grep 4433f31f-5d
| 4433f31f-5d93-4fe4-868a-04ddcc38be20 |                                                 | fa:16:3e:25:22:b3 | {"subnet_id": "d169f180-4304-42f0-b11f-e094287bcd00", "ip_address": "192.168.44.1"}  |

Keepalived related

L3HA mode is havily relied on the daemon: Keepalived and this daemon is existed in qrouter namespace.

# vi /var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765/keepalived.conf
vrrp_instance VR_1 {
    state BACKUP
    interface ha-857640ad-a6
    virtual_router_id 1
    priority 50
    garp_master_delay 60
    nopreempt
    advert_int 2
    track_interface {
        ha-857640ad-a6
    }
    virtual_ipaddress {
        169.254.0.1/24 dev ha-857640ad-a6
    }
    virtual_ipaddress_excluded {
        10.12.20.32/16 dev qg-f02984c6-dc
        10.12.20.33/32 dev qg-f02984c6-dc
        192.168.44.1/24 dev qr-4433f31f-5d
        192.168.55.1/24 dev qr-16e20a36-fc
        192.168.66.1/24 dev qr-35235c4f-64
        fe80::f816:3eff:fe0d:2702/64 dev qr-16e20a36-fc scope link
        fe80::f816:3eff:fe25:22b3/64 dev qr-4433f31f-5d scope link
        fe80::f816:3eff:fe51:30a1/64 dev qg-f02984c6-dc scope link
        fe80::f816:3eff:fe8f:a85b/64 dev qr-35235c4f-64 scope link
    }
    virtual_routes {
        0.0.0.0/0 via 10.12.0.254 dev qg-f02984c6-dc
    }
}

There are other two files under /var/lib/neutron/ha_confs/<< qrouter uuid >>/
neutron-keepalived-state-change.log ==> log file
state ==> HA status


# find -L /proc/[1-9]*/task/*/ns/net -samefile /run/netns/qrouter-f1e03fef-cccf-43de-9d35-56d11d636765 | cut -d/ -f5
2276895
2276896
2277216
2277217
3284547

# ps aux | grep -e "2276895|2276896|2277216|2277217|3284547"
neutron  2276895  0.0  0.0 126160 41364 ?        S    Jul22   0:00 /usr/bin/python2.7 /usr/bin/neutron-keepalived-state-change --router_id=f1e03fef-cccf-43de-9d35-56d11d636765 --namespace=qrouter-f1e03fef-cccf-43de-9d35-56d11d636765 --conf_dir=/var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765 --monitor_interface=ha-857640ad-a6 --monitor_cidr=169.254.0.1/24 --pid_file=/var/lib/neutron/external/pids/f1e03fef-cccf-43de-9d35-56d11d636765.monitor.pid --state_path=/var/lib/neutron --user=119 --group=125
root     2276896  0.0  0.0   6696   756 ?        S    Jul22   0:00 ip -o monitor address
root     2277216  0.0  0.0  44752   856 ?        Ss   Jul22   0:13 keepalived -P -f /var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765/keepalived.conf -p /var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765.pid -r /var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765.pid-vrrp
root     2277217  0.0  0.0  51148  1712 ?        S    Jul22   0:24 keepalived -P -f /var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765/keepalived.conf -p /var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765.pid -r /var/lib/neutron/ha_confs/f1e03fef-cccf-43de-9d35-56d11d636765.pid-vrrp
neutron  3284547  0.0  0.0 172176 36032 ?        S    Jul22   0:00 /usr/bin/python2.7 /usr/bin/neutron-ns-metadata-proxy --pid_file=/var/lib/neutron/external/pids/f1e03fef-cccf-43de-9d35-56d11d636765.pid --metadata_proxy_socket=/var/lib/neutron/metadata_proxy --router_id=f1e03fef-cccf-43de-9d35-56d11d636765 --state_path=/var/lib/neutron --metadata_port=8775 --metadata_proxy_user=119 --metadata_proxy_group=125 --verbose --log-file=neutron-ns-metadata-proxy-f1e03fef-cccf-43de-9d35-56d11d636765.log --log-dir=/var/log/neutron


# neutron l3-agent-list-hosting-router f1e03fef-cccf-43de-9d35-56d11d636765

Then, we learn that the master vrouter is in node-8. 
There are other ways to know which node is master:
1. use the command to see if the interface qr-xxxxx and qg-xxxxx have ip address or not. If yes, this node is master.
  • ip netns exec qrouter-f1e03fef-cccf-43de-9d35-56d11d636765 ip a
2. Check the following file that contains "master" or not.
  • vim /var/lib/neutron/ha_confs/<< qrouter uuid >>/state
For more details:
http://www.slideshare.net/orimanabu/l3-ha-vrrp20141201



Friday, June 24, 2016

[Ceilometer] To survey how to improve the performance of OpenStack Ceilometer

Frankly speaking, OpenStack Ceilometer will suffer some kind of performance issues sooner or later if you don't modify or tune the configuration. The issues has two parts that need you to consider. One is the message bus and API loading, and the other is database. However, I find some best practices which are easy and quick for us to adopt. Here you go:


1. Telemetry(Ceilometer) best practices

a. Data collection

  1. Based on your needs, you can edit the pipeline.yaml configuration file to include a selected number of meters while disregarding the rest.
  2. By default, Telemetry service polls the service APIs every 10 minutes. You can change the polling interval on a per meter basis by editing the pipeline.yaml configuration file.
    for example:
    
    vim /etc/ceilometer/ceilometer.conf
    => evaluation_interval=120
    vim /etc/ceilometer/pipeline.yaml
    => interval: 120


  3. you can delay or adjust polling requests by enabling the jitter support. This adds a random delay on how the polling agents send requests to the service APIs. To enable jitter, set shuffle_time_before_polling_task in the ceilometer.conf configuration file to an integer greater than 0.

b. Data storage

  1. We recommend that you avoid open-ended queries.
  2. You can install the API behind mod_wsgi, as it provides more settings to tweak, likethreads and processes in case of WSGIDaemon. a. For more information on how to configure mod_wsgi, see the Telemetry Install Documentation.
  3. The collection service provided by the Telemetry project is not intended to be an archival service. Set a Time to Live (TTL) value to expire data and minimize the database size.
    for example:
    
    vi /etc/ceilometer/ceilometer.conf
    => time_to_live=302400
  4. Use replica sets in MongoDB. Replica sets provide high availability through automatic failover. If your primary node fails, MongoDB will elect a secondary node to replace the primary node, and your cluster will remain functional.
    1. For more information on replica sets, see the MongoDB replica sets docs.
  5. Use sharding in MongoDB. Sharding helps in storing data records across multiple machines and is the MongoDB’s approach to meet the demands of data growth.


2. Metering Service (Ceilometer): Best Practices and Optimization



a. Modifying the List of Meters

sources:
    - name: meter_source
      interval: 604800
      meters:
          - "instance"
          - "image"
          - "image.size"
          - "image.upload"
          - "image.delete"
          - "volume"
          - "volume.size"
          - "snapshot"
          - "snapshot.size"
          - "ip.floating"
          - "network.*"
          - "compute.instance.create.end"
          - "compute.instance.delete.end"
          - "compute.instance.update"
          - "compute.instance.exists"
      sinks:
          - meter_sink
sinks:
    - name: meter_sink
      transformers:
      publishers:
          - notifier://

b. Modifying the Polling Intervals

The interval attribute is the time between polls. Meters that are available as both notification and polling are going to be polled at the specified interval. To rely on notifications rather than polling, set the interval attribute to 604800 seconds, or once a week.

Reference



One of the main issues operators relayed was the polling that Ceilometer was running on Nova to gather instance information. It had a highly negative impact on the Nova API CPU usage, as it retrieves all the information about instances on regular intervals.