Thursday, October 28, 2021

[Golang] The example function of converting Struct or Map data to Map[string]interface{} Type

    I recently encountered a use case that I need to convert my struct or map value to the type of map[string]interface{}. After surveying and studying for a while, I figure out how to deal with this kind of task and the way to do it.

    The following function ConvertStructToMap()  is the example of converting Struct or Map data to Map[string]interface{} Type. It receives the argument as interface type and uses reflect function to check the receiver type is correct and what we want. But, it has a constrain, which if you give a map, and Map's key type must be string.

// ConvertStructToMap()
func ConvertStructToMap(message interface{}) (map[string]interface{}, error) {
msg := reflect.ValueOf(message)
msgtype := msg.Type()

// support Struct
if msgtype.Kind() == reflect.Struct {
// message should be tagged by "codec" or "msg"
kv := make(map[string]interface{})
fields := msgtype.NumField()
for i := 0; i < fields; i++ {
field := msgtype.Field(i)
name := field.Name
if n1 := field.Tag.Get("json"); n1 != "" {
name = n1
} else if n2 := field.Tag.Get("msg"); n2 != "" {
name = n2
}
kv[name] = msg.FieldByIndex(field.Index).Interface()
}
return kv, nil
}
// support map[string]interface{} or map[string]string
if msgtype.Kind() != reflect.Map {
return nil, errors.New("message must be a map")
} else if msgtype.Key().Kind() != reflect.String {
return nil, errors.New("map keys must be strings")
}

// Get the interface{}'s current value
kv := make(map[string]interface{})
for _, k := range msg.MapKeys() {
kv[k.String()] = msg.MapIndex(k).Interface()
}
return kv, nil
}

func main() {
fmt.Println("Hello, playground")
structData := struct { Name string `json:"JsonName"` 
                       Score int `msg:"MsgScore"`} { 
                       "john smith", 30, }
kv, err := ConvertStructToMap( structData )
if err != nil {
    fmt.Println(err)
}
fmt.Println(kv)
}

How to use it? Here we go! You can try it on the Go Playground:
https://play.golang.org/p/TLKBIbSxIQj

or just take a look at the sample as follows:

// The way to use ConvertStructToMap()
func main() {
structData := struct { Name string `json:"JsonName"` 
                       Score int `msg:"MsgScore"`} { 
                       "john smith", 30, }
kv, err := ConvertStructToMap( structData )
if err != nil {
    fmt.Println(err)
}
fmt.Println(kv)
        mapData := make(map[string]int)
        mapData["Score1"] = 100
        mapData["Score2"] = 60
        kv, err = ConvertStructToMap( mapData )
        if err != nil {
    fmt.Println(err)
}
fmt.Println(kv)
}


Run Result==>

map[JsonName:john smith MsgScore:30]
map[Score1:100 Score2:60]



Monday, October 18, 2021

Python matplotlib 中文亂碼解決 in Linux or Windows

 大家是否有遇過當使用matplotlib時,遇到顯示不出中文或是中文為亂碼的問題。無論是在Anaconda內使用matplotlib或是直接在Python安裝環境內使用matplotlib,基本解決方式是一樣的。本文將以簡單與條列方式描述在Linux 或是 Windows 解決方法。

1. 下載字型的來源

https://www.fontpalace.com/font-download/SimHei/

2. 字型安裝

執行python command, 並以下列方式找到matplotlib放置ttf字型檔位置與設定檔

>>> import matplotlib
>>> matplotlib.matplotlib_fname()

根據下列不同環境的執行結果內放置ttf字型檔

Windows: 

放到: C:\Users\User\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\matplotlib\mpl-data\fonts\ttf 

修改設定檔  C:\Users\User\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\matplotlib\mpl-data\matplotlibrc

Linux:

 
放到: /usr/local/lib/python2.7/dist-packages/matplotlib/mpl-data/fonts/ttf
修改設定檔  /usr/local/lib/python2.7/dist-packages/matplotlib/mpl-data/matplotlibrc

Anaconda:


放到: /opt/conda/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf
修改設定檔  /opt/conda/lib/python3.7/site-packages/matplotlib/mpl-data/matplotlibrc

3. 設定檔matplotlibrc修改方式
font.family  : sans-serif
font.serif      : SimHei   <== 增加此項目

範例如下:


4. 重新載入字體

>>> from matplotlib.font_manager import _rebuild
>>> _rebuild() 



Wednesday, October 6, 2021

個人常用的 Git Commands

 0. 相關初始設定

git init
git config --global user.name "teyenliu"
git config --global user.email "teyen.liu@gmail.com"
git config --list

#git config --global http.sslverify false.
#git config --global log.decorate short
#git config --global color.ui true
#git config --global core.editor "vim"


git remote -v

#首次建立repository
#git remote add origin https://github.com/teyenliu/XXXX.git
#git branch -M main  // 更換master branch name to main
#git push -u origin master

#CRLF
#Linux: git config --global core.autocrlf input
#Windows: git config --global core.autocrlf true

#Editor
#git config --global core.editor vim
#Setup commit message template
#git config --global commit.template ~/git-template

#如果是 fork a repository, 則需要設定upstream repo
git remote set-url origin <my fork's git repo>
git remote add upstream <upstream's git repo>

# 查看到我們名下的遠端項目
git remote -v

#獲取upstream的最新版本
git fetch upstream

#將upstream merge到我們當前分支
git merge upstream/master

1. check out 另一個branch
git checkout <to this branch>
git checkout -b <create_new_branch> <based on this branch>

2. 建議使用這個方式避免無謂的merges
git pull --rebase <remote name> <branch name>

3. 當要switch branch,但是有file未 commit,可以使用下列方式暫存起來
git stash save 'stash1'

#查看在 stash 中的缓存
git stash list

#恢复暂存
git stash pop

4.  git checkout 時發生 Please move or remove them before you can switch branches.
git clean -d -fx

5. 拉下來最新的檔案
git pull --rebase upstream master
git pull --rebase upstream ConfigBase

6. 推code 到 remote repo.
git push origin master

7. 補充發送
git commit --amend
git push -f origin ConfigBase
git push -f origin master

8. 建立/刪除分支
#建立
git checkout -b <branch> 從目前分支再去建立(會新增)本端分支
git push -u origin <branch> PUSH並建立遠端分支
#刪除
git branch -d <branch>

### Branch from a previous commit using Git ###
# Create the branch using a commit hash:
git branch branch_name <commit-hash>

#Or by using a symbolic reference:
git branch branch_name HEAD~3

#To checkout the branch while creating it, use:
git checkout -b branch_name <commit-hash or HEAD~3>

9. 移動某個commit點
#回到 上一次的 commit
git reset --hard HEAD

#回到 上一次的前一次 commit
git reset --hard HEAD^

#裡面最近做的所有 HEAD 的改動
git reflog
git reset --hard 904e1ba #最近的commit

10. 如果想要打tag( 以某個commit為基礎 )
# 產生一個新的branch以某個commit
git checkout -b <tagname> <commit id>
git push origin <tagname>

# 要先把 branch push上去的原因是, 之後建立的tag如果跟brnach name相同 (例如: v0.4 ), 則 branch會發生如下訊息:
error: src refspec v0.4 matches more than one.
error: failed to push some refs
如果不小心先push tags, 則必須把tag移除後, 才能push branch.


# 查看目前有的tag
git tag -l

# 打tag
git tag -a <tagname> -m "My App description"

# 刪除tag
git tag -d <tagname>

# push all tags 到 remote端
git push origin --tags

11. 如果想要檢查 submodule 是否有更新可使用下列指令:
git submodule foreach --recursive git pull origin master

12. 強制推送到remote
git push -f

13. 拉submodule的程式碼
git submodule update --recursive --remote

14. 查看完整的Commit 資料
git log --pretty=oneline

15. 退回到特定 Commit
# where [revision] is the commit hash (for example: 12345678901234567890123456789012345678ab)
git checkout [revision] .

#To rollback to a specific commit:
git reset --hard commit_sha

#To rollback 10 commits back:
git reset --hard HEAD~10

Trouble Shooting

如果遇到Tag Name與Branch Name相同時, 會有其中一種無法上傳至遠端的錯誤:
src refspec XXX 匹配多個, 例如:
error: src refspec v0.3 matches more than one

解決方式:

1. 先刪除分支然後上傳Tag:
git branch -D testtag

或是

2. 先刪除tag然後上傳分支:
git tag -d testtag





Monday, September 27, 2021

簡介 Fluentd 寫入 InfluxDB 透過 Fluent::Plugin::InfluxDB

 此文件用來說明 使用 fluent client-go API 並且 寫入資料到InfluxDB 透過 Fluentd 的Plugin Fluent::Plugin::InfluxDB (InfluxDB是用2.0)

fluent-logger-golang (fluent client-go API)


目前使用此fluent client-go API,將資料傳入Fluentd, 

會使用其Async模式來避免後續的latency event被block住, 當Fluentd server有問題時:
// Use "Async" to enable asynchronous I/O (connect and write)
// for sending events to Fluentd without blocking
setting.FluentdLogger.Logger, errF = fluent.New(
    fluent.Config{Async: true, FluentHost: fluenthost, FluentPort: intFluentPort})
if errF != nil {
		fmt.Println("[ERROR]:", errF)
		setting.FluentdLogger.Enabled = false
}
P.S: When Fluentd server has a problem, the events which are going to send will be buffered on the memory. The default size is 8192

BufferLimit  

Sets the number of events buffered on the memory.

The example of using fluent-logger-golang to send data:
tag := "apm.latency"
var data = map[string]string{
		"mytimestamp": strconv.FormatInt(time.Now().Unix(), 10),
		"mydata":      "hoge",
		"myjob":       "apm",
		"myvalue":     "55.55",
}
error := logger.Post(tag, data)Fluentd

Fluentd

Fluentd安裝,請參考官網
https://docs.fluentd.org/installation/install-by-deb


Fluentd操作

# 啟動/關閉/查看服務
sudo systemctl start td-agent.service
sudo systemctl stop td-agent.service
sudo systemctl status td-agent.service
sudo systemctl restart td-agent.service

#修改Fluentd設定
vi /etc/td-agent/td-agent.conf
#查看Fluentd logs
cat /var/log/td-agent/td-agent.log

InfluxDB 2.X

2.0 以上的InfluxDB 會需要token,Client端才有權限讀寫,其中一種方式查出Token是用InfluxDB自己的Web http://<your ip address>:8086,登入後點選"Data"

例如:

選擇GO

可以看到 token的值

// You can generate a Token from the "Tokens Tab" in the UI const token = "Iiq0TiIpL9lXn2GATwh3WeZBkLq-SEul6C0yrKLjq4T4WZ9b0BKVAsFeNs8q0Is93SMbhF0l63s4DwJja4MSbw=="

Fluent::Plugin::InfluxDB (This plugin is for using with InfluxDB 2.x 目前使用此Plugin)

This repository contains the reference Fluentd plugin for the InfluxDB 2.0.

Fluentd需要此Plugin來對應寫資料到InfluxDB2

我目前用的: The configuration of /etc/td-agent/td-agent.conf

#<match apm.**>
#  @type stdout
#</match>

<match apm.**>
    @type copy
    <store>
      @type influxdb2

      url             <https://localhost:8086>
      token           Iiq0TiIpL9lXn2GATwh3WeZBkLq-SEul6C0yrKLjq4TXXXX
      use_ssl         false
      bucket          apm
      org             com
      time_precision  s
      tag_keys          ["mytimestamp","mydata"]
      field_keys        ["myvalue"]
    </store>
    <store>
      @type stdout
    </store>
</match>

The result in InfluxDB



安裝此plugin:

sudo td-agent-gem install fluent-plugin-influxdb-v2
sudo td-agent-gem uninstall fluent-plugin-influxdb-v2

influxdb-plugin-fluent (只適用於InfluxDB 1.x instances)

fluent-plugin-influxdb is a buffered output plugin for fluentd and influxDB.

Configuration Example

<match apm.**>
  @type influxdb
  host  localhost
  port  8086
  dbname apm
  user  danny
  password  xxxxxxxxx
  use_ssl false
  time_precision s
  tag_keys ["timestamp", "data"]
  sequence_tag _seq
</match>

安裝 plugin:

sudo td-agent-gem install fluent-plugin-influxdb
sudo td-agent-gem uninstall fluent-plugin-influxdb

Reference

遇過的Error Message

[warn]: #0 failed to flush the buffer. retry_time=7 next_retry_seconds=2021-04-22 14:28:33 14429497340994114529/137438953472000000000 +0800 chunk="5c089be4bdfb9a28fb4b5ac58228a90 7" error_class=InfluxDB2::InfluxError error="failure writing points to database: partial write: points beyond retention policy dropped=1" 2021-04-22 14:27:22 +0800 [warn]: #0 suppressed same stacktrace

https://stackoverflow.com/questions/54359348/unable-to-insert-data-in-influxdb


Saturday, September 25, 2021

Vue.js 指令(Directives)

 

v-if

透過v-if指令,當v-if後的條件為true時,該元素就會顯示在 DOM 上,若false則該元素不會顯示在 DOM 的結構上。
範例:
<div id='app'>
<div v-if='text1'>最後這段文字會顯示</div>
<div v-if='text2'>最後這段文字不會顯示</div>
</div>
<script>
let vm = new Vue({
el:'#app',
data:{
text1:true,
text2:false
}
})
</script>

v-show

和上面的v-if很像,但v-showfalse時的消失,實際觀察 DOM 會發現該元素只是被加上了行內樣式 style="display:none"而已,並沒有從DOM上消失

v-for

Tuesday, September 21, 2021

JavaScript 語言基礎快速介紹 (包含ECMAScript 6)


JavaScript語言基本例子

var usr = "danny", age = 18;

//ECMAScript 6, ES 6
const LED_PIN = 13; //宣告常數, 不能修改

//primitive type
//Boolean: true or false
//Number: 3.14
//String: "AAA"
//Null: null
//Undefined: undefined

//字串轉換成數自函式
Number("8.24") -> 8.24
Number("123abc") -> NaN

parseInt("8.24") -> 8
parseInt("123abc") -> 123

parseFloat("8.24") -> 8.24
var num = 0.1 * 0.2;
num.toPrecision(12) //精確度縮限制小數點12位

//嚴格相等運算子 ===
// 8 === "8"=> false
// 8 == "8" => true 

x = ( x === undefined) ? 0 : x;

//在函式內以var宣告的變數, 都是區域變數, 以外定義的變數都是全域變數
//每隔5秒執行一次
window.setInterval(function() {
    // do something
    }, 5000);

//Array
var she = ["AAA", "BBB"];
var she = new Array("AAA","BBB");
var she = new Array(3); //三個元素空白陣列
var she = [];

she.push("CCC"); //後面添加新元素
she.pop(); //刪除最後一個元素並傳回
she.unshift("DDD"); //在陣列前最前面加入新元素
she.shift(); //刪除並傳回第一個元素
she.splice(1,1); //在index=1的位置刪除一個元素
she.splice(1,1, "EEE", "FFF"); //在index=1的位置刪除一個元素,並加入兩個新元素

//for迴圈
for(var i=0; i<total; i++) {
}
she.forEach( function(val) {
});

//Object
var obj = {name:"Danny", age:18};
delete obj.name; // delete指令僅能刪除物件的屬性

for( var key in obj){
    var val = obj[key];
    console.log("attr:" + key + ",value:" + val); 
}

[Service Mesh] Linkerd 2 Demo Case 介紹

 

Linkerd2 Demo Case 介紹

步驟

###Step 1: Install the CLI###
curl -sL run.linkerd.io/install | sh
export PATH=$PATH:/home/liudanny/.linkerd2/bin

###Step 2: Validate your Kubernetes cluster###
linkerd check --pre

###Step 3: Install the control plane onto your cluster###
linkerd install | kubectl apply -f -
linkerd check
linkerd viz install | kubectl apply -f - # on-cluster metrics stack

###Step 4: Explore Linkerd
linkerd viz dashboard &
linkerd -n **linkerd-viz** viz top deploy/web

###Step 5: Install the demo app###
curl -sL <https://run.linkerd.io/emojivoto.yml> \\
  | kubectl apply -f -
#add Linkerd to emojivoto by running
kubectl get -n emojivoto deploy -o yaml \\
  | linkerd inject - \\
  | kubectl apply -f -
linkerd -n emojivoto check --proxy

###Step 6: Watch it run###
linkerd -n emojivoto viz stat deploy
linkerd -n emojivoto viz top deploy
linkerd -n emojivoto viz tap deploy/web

###Step 7 (uninstall)###
kubectl get -n emojivoto deploy -o yaml \\
  | linkerd uninject - \\
  | kubectl apply -f -
curl -sL <https://run.linkerd.io/emojivoto.yml> \\
  | kubectl delete -f -
linkerd viz uninstall | kubectl delete -f -
linkerd uninstall | kubectl delete -f -

實驗

###測試自己的namespace
$kubectl get -n default deploy -o yaml \\
  | linkerd inject - \\
  | kubectl apply -f -

$kubectl exec tiefighter -- curl -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing

#uninject 
$kubectl get -n default deploy -o yaml \\
  | linkerd uninject - \\
  | kubectl apply -f -

### not work!!!
$kubectl get -n default pod -o yaml \\
  | linkerd inject - \\
  | kubectl apply -f -
#uninject 
$kubectl get -n default pod -o yaml \\
  | linkerd uninject - \\
  | kubectl apply -f -

心得

View the Linkerd dashboard and see all the services in the demo app. Since the demo app comes with a load generator, we can see live traffic metrics HTTP/2(gRPC)和HTTP/1(web frontend) by running: linkerd -n emojivoto viz stat deploy

This will show the “golden” metrics for each deployment:

  • Success rates
  • Request rates
  • Latency distribution percentiles

Inject function is very convenient for users.

There is no service perspective for metrics, but deployment/Pods/... can kind of cover this.

相關執行結果參考

$ k get all -n emojivoto
NAME                            READY   STATUS    RESTARTS   AGE
pod/emoji-696d9d8f95-p2xv5      2/2     Running   0          64m
pod/vote-bot-6d7677bb68-tmbfq   2/2     Running   0          64m
pod/voting-ff4c54b8d-whssp      2/2     Running   0          64m
pod/web-5f86686c4d-l8lcb        2/2     Running   0          64m

NAME                 TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
service/emoji-svc    ClusterIP   10.106.16.101    <none>        8080/TCP,8801/TCP   105m
service/voting-svc   ClusterIP   10.109.94.225    <none>        8080/TCP,8801/TCP   105m
service/web-svc      ClusterIP   10.100.247.154   <none>        80/TCP              105m

NAME                       READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/emoji      1/1     1            1           105m
deployment.apps/vote-bot   1/1     1            1           105m
deployment.apps/voting     1/1     1            1           105m
deployment.apps/web        1/1     1            1           105m

NAME                                  DESIRED   CURRENT   READY   AGE
replicaset.apps/emoji-66ccdb4d86      0         0         0       105m
replicaset.apps/emoji-696d9d8f95      1         1         1       64m
replicaset.apps/vote-bot-69754c864f   0         0         0       105m
replicaset.apps/vote-bot-6d7677bb68   1         1         1       64m
replicaset.apps/voting-f999bd4d7      0         0         0       105m
replicaset.apps/voting-ff4c54b8d      1         1         1       64m
replicaset.apps/web-5f86686c4d        1         1         1       64m
replicaset.apps/web-79469b946f        0         0         0       105m

$ linkerd -n emojivoto viz stat deploy
NAME       MESHED   SUCCESS      RPS   LATENCY_P50   LATENCY_P95   LATENCY_P99   TCP_CONN
emoji         1/1   100.00%   2.3rps           1ms           1ms           1ms          3
vote-bot      1/1   100.00%   0.3rps           1ms           1ms           1ms          1
voting        1/1    87.01%   1.3rps           1ms           1ms           2ms          3
web           1/1    91.91%   2.3rps           2ms          16ms          19ms          3
$ linkerd -n emojivoto viz top deploy
(press q to quit)
(press a/LeftArrowKey to scroll left, d/RightArrowKey to scroll right)

Source                     Destination             Method      Path                                                    Count    Best   Worst    Last  Success Rate
web-5f86686c4d-l8lcb       emoji-696d9d8f95-p2xv5  POST        /emojivoto.v1.EmojiService/ListAll                         42   562µs     5ms   937µs       100.00%
vote-bot-6d7677bb68-tmbfq  web-5f86686c4d-l8lcb    GET         /api/list                                                  42     3ms    13ms     9ms       100.00%
web-5f86686c4d-l8lcb       emoji-696d9d8f95-p2xv5  POST        /emojivoto.v1.EmojiService/FindByShortcode                 42   553µs    13ms     2ms       100.00%
vote-bot-6d7677bb68-tmbfq  web-5f86686c4d-l8lcb    GET         /api/vote                                                  41     5ms    21ms     6ms        87.80%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteDoughnut                    6   926µs     3ms     2ms         0.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteMrsClaus                    4     1ms     2ms     2ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteRocket                      2     2ms     3ms     3ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VotePointUp2                    2     2ms     3ms     3ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteCrossedSwords               2     2ms     3ms     3ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteWorldMap                    2   739µs     2ms     2ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteDog                         2     2ms     2ms     2ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteOkWoman                     2   951µs     2ms     2ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteNerdFace                    2     2ms     9ms     9ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteConstructionWorkerMan       2     1ms     3ms     3ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteCheckeredFlag               2   863µs     3ms   863µs       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/Vote100                         2   894µs     2ms   894µs       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VotePizza                       2     1ms     3ms     3ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteJackOLantern                2   884µs     3ms     3ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteManDancing                  2   761µs     1ms     1ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteBeachUmbrella               2     1ms     2ms     1ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteNoGoodWoman                 2     1ms     2ms     2ms       100.00%
web-5f86686c4d-l8lcb       voting-ff4c54b8d-whssp  POST        /emojivoto.v1.VotingService/VoteGuardsman                   2   968µs     2ms     2ms       100.00%
**$ linkerd -n emojivoto viz tap deploy/web**
req id=11:0 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :method=GET :authority=web-svc.emojivoto:80 :path=/api/list
req id=11:1 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :method=POST :authority=emoji-svc.emojivoto:8080 :path=/emojivoto.v1.EmojiService/ListAll
rsp id=11:1 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :status=200 latency=1792µs
end id=11:1 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true grpc-status=OK duration=193µs response-length=2140B
rsp id=11:0 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :status=200 latency=4294µs
end id=11:0 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true duration=358µs response-length=4513B
req id=11:2 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :method=GET :authority=web-svc.emojivoto:80 :path=/api/vote
req id=11:3 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :method=POST :authority=emoji-svc.emojivoto:8080 :path=/emojivoto.v1.EmojiService/FindByShortcode
rsp id=11:3 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :status=200 latency=1657µs
end id=11:3 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true grpc-status=OK duration=175µs response-length=25B
req id=11:4 proxy=out src=10.244.109.115:33470 dst=10.244.109.84:8080 tls=true :method=POST :authority=voting-svc.emojivoto:8080 :path=/emojivoto.v1.VotingService/VoteDoughnut
rsp id=11:4 proxy=out src=10.244.109.115:33470 dst=10.244.109.84:8080 tls=true :status=200 latency=2217µs
end id=11:4 proxy=out src=10.244.109.115:33470 dst=10.244.109.84:8080 tls=true grpc-status=Unknown duration=161µs response-length=0B
rsp id=11:2 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :status=500 latency=8272µs
end id=11:2 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true duration=171µs response-length=51B
req id=11:5 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :method=GET :authority=web-svc.emojivoto:80 :path=/api/list
req id=11:6 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :method=POST :authority=emoji-svc.emojivoto:8080 :path=/emojivoto.v1.EmojiService/ListAll
rsp id=11:6 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :status=200 latency=1483µs
end id=11:6 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true grpc-status=OK duration=145µs response-length=2140B
rsp id=11:5 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :status=200 latency=5621µs
end id=11:5 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true duration=336µs response-length=4513B
req id=11:7 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :method=GET :authority=web-svc.emojivoto:80 :path=/api/vote
req id=11:8 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :method=POST :authority=emoji-svc.emojivoto:8080 :path=/emojivoto.v1.EmojiService/FindByShortcode
rsp id=11:8 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :status=200 latency=1477µs
end id=11:8 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true grpc-status=OK duration=206µs response-length=28B
req id=11:9 proxy=out src=10.244.109.115:33470 dst=10.244.109.84:8080 tls=true :method=POST :authority=voting-svc.emojivoto:8080 :path=/emojivoto.v1.VotingService/VoteManDancing
rsp id=11:9 proxy=out src=10.244.109.115:33470 dst=10.244.109.84:8080 tls=true :status=200 latency=1560µs
end id=11:9 proxy=out src=10.244.109.115:33470 dst=10.244.109.84:8080 tls=true grpc-status=OK duration=144µs response-length=5B
rsp id=11:7 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :status=200 latency=7140µs
end id=11:7 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true duration=96µs response-length=0B
req id=11:10 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :method=GET :authority=web-svc.emojivoto:80 :path=/api/list
req id=11:11 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :method=POST :authority=emoji-svc.emojivoto:8080 :path=/emojivoto.v1.EmojiService/ListAll
rsp id=11:11 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true :status=200 latency=1855µs
end id=11:11 proxy=out src=10.244.109.115:55194 dst=10.244.109.109:8080 tls=true grpc-status=OK duration=375µs response-length=2140B
rsp id=11:10 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :status=200 latency=3786µs
end id=11:10 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true duration=339µs response-length=4513B
req id=11:12 proxy=in  src=10.244.109.92:46446 dst=10.244.109.115:8080 tls=true :method=GET :authority=web-svc.emojivoto:80 :path=/api/vote


[Service Mesh] Linkerd2 Features 重點整理

 整理官方文件 https://linkerd.io/2.10/features/ 如下:

HTTP, HTTP/2, and gRPC Proxying

Linkerd can proxy all TCP connections, and will automatically enable advanced features (including metrics, load balancing, retries, and more) for HTTP, HTTP/2, and gRPC connections.

TCP Proxying and Protocol Detection

Linkerd is capable of proxying all TCP traffic, including TLS connections, WebSockets, and HTTP tunneling.

In most cases, Linkerd can do this without configuration. To do this, Linkerd performs protocol detection to determine whether traffic is HTTP or HTTP/2 (including gRPC). If Linkerd detects that a connection is HTTP or HTTP/2, Linkerd will automatically provide HTTP-level metrics and routing.

If Linkerd cannot determine that a connection is using HTTP or HTTP/2**, Linkerd will proxy the connection as a plain TCP connection, applying mTLS and providing byte-level metrics** as usual.

Note Client-initiated HTTPS will be treated as TCP, not as HTTP, as Linkerd will not be able to observe the HTTP transactions on the connection.

Configuring protocol detection

( We ITRI currently get TCP info from Layer 4 Network Stack in Kernel )

In some cases, Linkerd’s protocol detection cannot function because it is not provided with enough client data. This can result in a 10-second delay in creating the connection as the protocol detection code waits for more data. This situation is often encountered when using “server-speaks-first” protocols, or protocols where the server sends data before the client does, and can be avoided by supplying Linkerd with some additional configuration.

There are two basic mechanisms for configuring protocol detection: opaque ports and skip ports. Marking a port as opaque instructs Linkerd to proxy the connection as a TCP stream and not to attempt protocol detection. Marking a port as skip bypasses the proxy entirely.

By default, Linkerd automatically marks some ports as opaque, including the default ports for SMTP, MySQL, PostgresQL, and Memcache. Services that speak those protocols, use the default ports, and are inside the cluster do not need further configuration.

The following table summarizes some common server-speaks-first protocols and the configuration necessary to handle them. The “on-cluster config” column refers to the configuration when the destination is on the same cluster; the “off-cluster config” to when the destination is external to the cluster.

some common server-speaks-first protocols

  • No configuration is required if the standard port is used. If a non-standard port is used, you must mark the port as opaque.

Retries and Timeouts

Automatic retries are one the most powerful and useful mechanisms a service mesh has for gracefully handling partial or transient application failures.

Timeouts work hand in hand with retries. Once requests are retried a certain number of times, it becomes important to limit the total amount of time a client waits before giving up entirely. Imagine a number of retries forcing a client to wait for 10 seconds.

Automatic mTLS

By default, Linkerd automatically enables mutual Transport Layer Security (mTLS) for most TCP traffic between meshed pods, by establishing and authenticating secure, private TLS connections between Linkerd proxies. This means that Linkerd can add authenticated, encrypted communication to your application with very little work on your part.

Telemetry and Monitoring

One of Linkerd’s most powerful features is its extensive set of tooling around observability—the measuring and reporting of observed behavior in meshed applications

To gain access to Linkerd’s observability features you only need to install the Viz extension:

linkerd viz install | kubectl apply -f -

Linkerd’s telemetry and monitoring features function automatically, without requiring any work on the part of the developer. These features include:

  • Recording of top-line (“golden”) metrics (request volume, success rate, and latency distributions) for HTTP, HTTP/2, and gRPC traffic.
  • Recording of TCP-level metrics (bytes in/out, etc) for other TCP traffic. (We ITRI record TCP and UDP Tx/Rx bytes both)
  • Reporting metrics per service, per caller/callee pair, or per route/path (with Service Profiles).
  • Generating topology graphs that display the runtime relationship between services.
  • Live, on-demand request sampling.

This data can be consumed in several ways:

Golden metrics

Success Rate

This is the percentage of successful requests during a time window (1 minute by default).

In the output of the command linkerd viz routes -o wide, this metric is split into EFFECTIVE_SUCCESS and ACTUAL_SUCCESS. For routes configured with retries, the former calculates the percentage of success after retries (as perceived by the client-side), and the latter before retries (which can expose potential problems with the service).

Traffic (Requests Per Second)

This gives an overview of how much demand is placed on the service/route. As with success rates, linkerd viz routes --o wide splits this metric into EFFECTIVE_RPS and ACTUAL_RPS, corresponding to rates after and before retries respectively.

Latencies ( We ITRI's latency is defined as time to client → server → client . We also have service's response time)

Times taken to service requests per service/route are split into 50th, 95th and 99th percentiles. Lower percentiles give you an overview of the average performance of the system, while tail percentiles help catch outlier behavior.

Load Balancing

For HTTP, HTTP/2, and gRPC connections, Linkerd automatically load balances requests across all destination endpoints without any configuration required. (For TCP connections, Linkerd will balance connections.)

Linkerd uses an algorithm called EWMA, or exponentially weighted moving average, to automatically send requests to the fastest endpoints. This load balancing can improve end-to-end latencies.

Service discovery

For destinations that are not in Kubernetes, Linkerd will balance across endpoints provided by DNS.

For destinations that are in Kubernetes, Linkerd will look up the IP address in the Kubernetes API. If the IP address corresponds to a Service, Linkerd will load balance across the endpoints of that Service and apply any policy from that Service’s Service Profile. On the other hand, if the IP address corresponds to a Pod, Linkerd will not perform any load balancing or apply any Service Profiles.

Load balancing gRPC

Linkerd’s load balancing is particularly useful for gRPC (or HTTP/2) services in Kubernetes, for which Kubernetes’s default load balancing is not effective.

Automatic Proxy Injection

Linkerd automatically adds the data plane proxy to pods when the linkerd.io/inject: enabled annotation is present on a namespace or any workloads, such as deployments or pods. This is known as “proxy injection”. ( Here a lot of details in Adding Your Services to Linkerd)

Details

Proxy injection is implemented as a Kubernetes admission webhook. This means that the proxies are added to pods within the Kubernetes cluster itself, regardless of whether the pods are created by kubectl, a CI/CD system, or any other system.

For each pod, two containers are injected:

  1. linkerd-init, a Kubernetes Init Container that configures iptables to automatically forward all incoming and outgoing TCP traffic through the proxy. (Note that this container is not present if the Linkerd CNI Plugin has been enabled.)
  2. linkerd-proxy, the Linkerd data plane proxy itself.

Note that simply adding the annotation to a resource with pre-existing pods will not automatically inject those pods. You will need to update the pods (e.g. with kubectl rollout restart etc.) for them to be injected. This is because Kubernetes does not call the webhook until it needs to update the underlying resources.

CNI Plugin

Linkerd installs can be configured to run a CNI plugin that rewrites each pod’s iptables rules automatically. Rewriting iptables is required for routing network traffic through the pod’s linkerd-proxy container. When the CNI plugin is enabled, individual pods no longer need to include an init container that requires the NET_ADMIN capability to perform rewriting. This can be useful in clusters where that capability is restricted by cluster administrators.

Distributed Tracing

(We ITRI don't require code changes. We provide the downstream of related trajectories )

Linkerd can be configured to emit trace spans from the proxies, allowing you to see exactly what time requests and responses spend inside.

Unlike most of the features of Linkerd, distributed tracing requires both code changes and configuration. (You can read up on Distributed tracing in the service mesh: four myths for why this is.)

Furthermore, Linkerd provides many of the features that are often associated with distributed tracing, without requiring configuration or application changes, including:

  • Live service topology and dependency graphs
  • Aggregated service health, latencies, and request volumes
  • Aggregated path / route health, latencies, and request volumes

For example, Linkerd can display a live topology of all incoming and outgoing dependencies for a service, without requiring distributed tracing or any other such application modification:

The Linkerd dashboard showing an automatically generated topology graph

https://linkerd.io/images/books/webapp-detail.png